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Reflection equation i

= Total reflected radiance: integrate contributions of incident
radiance, weighted by the BRDF, over the hemisphere

Lout(wout) — f Lin(win) ) fr(win - wout) + €0S By d(‘)in
_7 H (X)

upper hemisphere over x

.Y 1o
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Rendering = Integration of functions

Lout(wout) = j Lin(win) . f;‘(win - a)out) - cos By, dwjy
H(x)

= Problems

o Discontinuous integrand
(visibility)

o Arbitrarily large integrand
values (e.g. light distribution

N in caustics, BRDFs of glossy
Incoming radiance Surfaces)
L, (x,m,,) for a point
on the ceiling.

o Complex geometry

Images: Greg Ward Advanced 3D Graphics (NPGRO10) - J. Vorba 2020,
created by J. Kfivanek 2015 4



Monte Carlo integration

= General tool for estimating definite integrals

Integral:
I = J g(x)dx

Monte Carlo estimate I:

N
_1xX9Gk)
V=N LG

Sk X p(X)

0 Eo B8, B, E, E 1 Works “on average™:
E[(D] =1
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Application of MC to reflection eq:
Estimator of reflected radiance

= Integral to be estimated:

j l\lin(win) fr (win - wout) COS Hin }dwin
H(x)

integraYnd(oain)
= pdf for cosine-proportional sampling;:

cos Bip

p(win) = -

= MC estimator (formula to use in the renderer):

N
- 1 z integrand (wip x )
N
k_
N

out pdf(win,k)
T
- N z Lin ((‘)in,k) fr((‘)in,k - wout)
k=1
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Estimator of reflected radiance:
Implementation

// input variables

X...shaded point on a surface
normal...surface normal at x
omegaOut...viewing (camera) direction
estimatedRadianceOut := Rgb(0,0,0);
for k = 1...N
[omegalnK, pdf] := generateRndDirection()

// evaluate integrand
radiancelInEst := getRadianceln (x, omegalnK);
brdf := evalBrdf (x, omegalnK, omegaOut);
cosThetaln := dot(normal, omegalnK);
integrand := radiancelInEst * brdf * cosThetaln;
// evaluate contribution to the outgoing radiance
estimatedRadianceOut += integrand / pdf;

end for

estimatedRadianceOut /= N;
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Variance => image noise
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... and now the slow way




Digression:
Numerical quadrature




‘ Quadrature formulas for numerical
integration

= General formula in 1D:

N
= wieg(a)
k=1

g integrand (i.e. the integrated function)

N  quadrature order (i.e. number of integrand samples)
x;  node points (i.e. positions of the samples)

g(x,) integrand values at node points

w, quadrature weights
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‘ Quadrature formulas for numerical

integration

Quadrature rules differ by the choice of node point positions x;, and

the weights w,,

quadrature, ...
y
The samples i
(i.e. the node points) fxi1)

are placed deterministically

N

o E.g. rectangle rule, trapezoidal rule, Simpson’s method, Gauss

/ Xi
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‘ Quadrature formulas in multiple
dimensions

= General formula for quadrature of a function of multiple
variables:

= Convergence speed of approximation error E for a d-
dimensional integral is E = O(IN-/9)

o E.g. in order to cut the error in half for a 3-dimensional
integral, we need 23 = 8 times more samples

= Unusable in higher dimensions
o Dimensional explosion
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‘ Quadrature formulas in multiple
dimensions

= Deterministic quadrature vs. Monte Carlo

0 In 1D deterministic better than Monte Carlo
o In 2D roughly equivalent
o From 3D, MC will always perform better

= Remember, quadrature rules are NOT the Monte Carlo
method
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Monte Carlo




History of the Monte Carlo method

= Atomic bomb development, Los Alamos 1940

John von Neumann, Stanislav Ulam, Nicholas
Metropolis

= Further development and practical applications from the
early 50’s
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Monte Carlo method

= We simulate many random occurrences of the same type
of events, e.g.:

o Neutrons — emission, absorption, collisions with hydrogen
nuclei

o Behavior of computer networks, traffic simulation.

o Sociological and economical models — demography,
inflation, insurance, etc.
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Monte Carlo — applications

= Financial market simulations

= Traffic flow simulations

= Environmental sciences

= Particle physics

= Quantum field theory

= Astrophysics

= Molecular modeling

= Semiconductor devices

= Optimization problems

= Light transport calculations
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Example: calculation of 7

Slide credit: Iwan Kawrakov

Area of square: A; = 4
Area of circle: A, =«
Fraction p of random
points inside circle:

™
4

Random points: N
Random points inside
circle: N,

The Monte Cario Simulation of Radialion Transport - p.535



An

Slide credit: Iwan Kawrakov

Calculation of 7 (cont’d)
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Variance => image noise
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Monte Carlo integration

= Samples are placed randomly (or pseudo-randomly)

= Convergence of standard error: std. dev. = O(IN"/2)
o Convergence speed independent of dimension

o Faster than classic quadrature rules for 3 and more
dimensions

= Special methods for placing samples exist
o Quasi-Monte Carlo

o Faster asymptotic convergence than MC for “smooth”
functions
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Monte Carlo integration

= Pros
o Simple implementation

o Robust solution for complex integrands and integration
domains

o Effective for high-dimensional integrals

= Cons

o Relatively slow convergence — halving the standard error
requires four times as many samples

o In rendering: images contain noise that disappears slowly
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Review — Random variables




Random variable

= X ...random variable

= X assumes different values with different probability
o Given by the probability distribution D
o X ~D
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Discrete random variable

= Finite set of values of x;

= Each assumed with prob. p;

=Pr(X =x)=0 D p =
=1

= Cumulative distribution

function

Pr(X <x)= Zp,
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Continuous random variable

= Probability density function, pdf, p(x)

Pr(X e D)= jD n(x) dx

= In1D:;

Pr(a< X <b)= jb o(t) dt
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Continuous random variable

= Cumulative distribution function, cdf, P(x)

In 1D:

P(x)=Pr(X <x)=[ p(t)dt

Pr(X =a)= j o(t) dt =0
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Continuous random variable

Example: Uniform distribution

Probability density
function (pdf)
1
Cumulative distribution
function (cdf) |
0
0
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Continuous random variable

Gaussian (normal) distribution

Probability density
function (pdf)

Cumulative distribution
function (cdf)
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Expected value and variance

= Expected value

E[X]ZIDX p(X) dx
= Variance
VIX]=E[(X -E[X])’]
= E[X*-2XE[X ]|+ E[X ]
= E[X’|-E[X]

o Properties of variance

VIY X,1=> V[X,] (fX;areindependent)

7
VliaX |=a V| X
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Transformation of a random variable

Y =g(X)

= Yis arandom variable

= Expected valueof Y

EIY] = | 960 pGo) dx

D
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Monte Carlo integration




Monte Carlo integration

= General tool for estimating definite integrals

Integral:

I = fg(x)dx

Monte Carlo estimate I:

N
1 9Gk)

V=N L e

Sk X p(x)

0 Eo B8, B, E, E 1 Works “on average™:
E[(D]=1
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Primary estimator of an integral

Integral to be estimated: | = IQ f (X) dx

Let X be a random variable from the distribution with the
pdf p(x), then the random variable F,;, given by the

transformation f{X)/p(X) is called the primary
estimator of the above integral.

f(X)

|:prim
p(X)
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‘ Primary estimator of an integral

AX)

0 X 1

Advanced 3D Graphics (NPGRO10) - J. Vorba 2020,
created by J. Kfivanek 2015

36



Estimator vs. estimate

= Estimator is a random variable

o It is defined though a transformation of another random
variable

= Estimate is a concrete realization (outcome) of the
estimator

= No need to worry: the above distinction is important for
proving theorems but less important in practice
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Unbiased estimator

= A general statistical estimator is called unbiased if —
“on average” — it yields the correct value of an estimated
quantity Q (without systematic error).

= More precisely:

Estimator of the
(random variable)

7

E[F] = Q

N

/

quantity Q

Advanced 3D Graphics (NPGRO10) - J.
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N\

Estimated quantity

(In our case, it is an integral,
but in general it could be
anything. It is a number, not a

random variable.)
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Unbiased estimator

The primary estimator F,;,, is an unbiased estimator of the
integral 1.
Proof:
f(x
E [Fprim ] = _“Q p(X) dx
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Variance of the primary estimator

For an unbiased estimator, the error is due to variance:

jf(x)z dx—1°

p(X)

(for an unbiased estimator)

VIF,m|= 62 =EIF

prim

prim ] E[Fprlm]

If we use only a single sample, the variance is usually too high.
Depends on p(x).
We need more samples in practice => secondary estimator.
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Secondary estimator of an integral

= Consider N independent random variables X,

= The estimator F,, given be the formula below is called the

secondary estimator of I.

1 C f(Xi)
N & p(X;)

= The secondary estimator is unbiased.

Advanced 3D Graphics (NPGRO10) - J. Vorba 2020,
created by J. Kfivanek 2015

41



Variance of the secondary estimator

N
1 f(Xx)

N £ p(Xy)

1 f(Xk)
W.N v p(Xx)

= 5" [Fprin]

VIFy] = V

.. standard deviation is VN-times smaller!
(i.e. error converges with 1/VN)
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Properties of estimators




Unbiased estimator

= A general statistical estimator is called unbiased if —
“on average” — it yields the correct value of an estimated
quantity Q (without systematic error).

= More precisely:

Estimator of the
(random variable)

7

E[F] = Q

N

/

quantity Q

Advanced 3D Graphics (NPGRO10) - J.
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Estimated quantity

(In our case, it is an integral,
but in general it could be
anything. It is a number, not a

random variable.)
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Bias of a biased estimator

= If

E[F]=Q

then the estimator is “biased” (cz: vychyleny).

= Bias is the systematic error of the estimator:

B=Q-E[F]
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Consistency

= Consider a secondary estimator with N samples:

Fy = Fy (X, X5, Xy)

= Estimator F) is consistent if

PT‘{ lim Fy = Q} = 1

N —=00

i.e. if the error F, — Q converges to zero with probability 1.
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Consistency

= Sufficient condition for consistency of an estimator:

lim J[Fy|] = lim V|Fy| = 0

N—oo N—00

bias

= Unbiasedness is not sufficient for consistency by itself (if
the variance is infinite).

= But if the variance of a primary estimator finite, then the
corresponding secondary estimator is necessarily
consistent.
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Rendering algorithms

= Unbiased
o Path tracing
o Bidirectional path tracing
o Metropolis light transport

= Biased & Consistent
o Progressive photon mapping

= Biased & not consistent
o Photon mapping
o Irradiance / radiance caching
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‘ Mean Squared Error — MSE
(cz: Stredni kvadraticka chyba)

= Definition

MSE[F] = E[(F -Q)’]

= Proposition

MSE[F]=V[F]+ B[FT

a Proof
MSE[F] = E[(F - Q)]
= E|(F - E[F))’] + 2E[F — E[F]|(E[F] - Q) + (E[F] - Q)
= VI[F]+ 3[F]",
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‘ Mean Squared Error — MSE
(cz: Stredni kvadraticka chyba)

= If the estimator Fis unbiased, then
MSE[F]=V][F]

1.e. for an unbiased estimator, it is much easier to
estimate the error, because it can be estimated directly
from the samples Y, = f(X}) / p(XL).

= Unbiased estimator of variance

VIFy] = ‘\1_1 {(i il ) (\TZY) }
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Why divide by N-1 instead of N?

= To get an unbiased estimate
m https://en.wikipedia.org/wiki/Bessel%27s correction
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https://en.wikipedia.org/wiki/Bessel%27s_correction

Root Mean Squared Error — RMSE

RMSE[F] =  MSE[F]
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Efficiency of an estimator

= Efficiency of an unbiased estimator is given by:

e|F] =

1

VIF|T[F]
/N

variance Calculation time

(i.e. operations count, such
as number of cast rays)
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MC estimators for illumination
calculation




Estimator of reflected radiance (1)

= Integral to be estimated:

j l\lin(win) fr (win - wout) COS Hin }dwin
H(x)

integraYnd(oain)
= pdf for uniform hemisphere sampling;:
1
p(win) — %

= MC estimator (formula to use in the renderer):

N
- 1 z integrand (wip x )
N
k_
N

t
ou pdf(a)in,k)
21
= W z Lln ((‘)ln,k) f;"(wln,k - wout) COS Qin’k
k=1
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Application of MC to reflection eq:
Estimator of reflected radiance

= Integral to be estimated:

j l\lin(win) fr (win - wout) COS Hin }dwin
H(x)

integraYnd(oain)
= pdf for cosine-proportional sampling;:

cos Bi,

p(win) = -

= MC estimator (formula to use in the renderer):

N
- 1 z integrand (wip x )
N
k_
N

out pdf(win,k)
T
— W z Lin (win,k) fr (win,k - wout)
k=1
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Irradiance estimate — light source
sampling
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Irradiance estimate — light source
sampling

= Reformulate the reflection integral (change of variables)

E(x) = ILi(X’a)i)'COSHi do G(y ©X)
H (%)
cosd, -cos O, —
= [Lly>x)V(y x)-—2——dA
A y=x|

= PDF for uniform sampling of the surface area:

1
ply)=—
A

= Estimator

A
- _ZI— (yk _)X)'V(yk (_)X)°G(yk <_)X)
N <
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Light source vs. cosine sampling

Light source area sampling Cosine-proportional sampling

Images: Pat Hanrahan
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Example — Area Sampling

1 shadow ray per eye ray

Center Random

CS348B Lecture 6 Pat Hanrahan, Spring 2011



Example — Area Sampling

16 shadow rays per eye ray

Uniform grid Stratified random

CS348B Lecture 6 Pat Hanrahan, Spring 2011



‘ Area light sources

1 sample per pixel 9 samples per pixel 36 samples per pixel
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‘ Direct illumination on a surface with
an arbitrary BRDF

= Integral to be estimated

L (%,@,) = [ LL(y > X)- f,(y > X > @,) -V (y <> X)-G(y <> X) dA

= Estimator based on uniform light source sampling

Al N
Fy Z%Z L.y = X)- T.(y > X>0,)-V(y, ©&X)-Gly, ©X)
k=1
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